metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Poly[bis[μ_2 -(dimethylazaniumyl)-methylenediphosphonato]magnesium]

Qiao-Sheng Hu, Xiao-Yu Deng, Yu-Hui Sun and Zi-Yi Du*

College of Chemistry and Life Science, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China

Correspondence e-mail: ziyidu@gmail.com

Received 31 January 2011; accepted 17 February 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (N–C) = 0.002 Å; R factor = 0.024; wR factor = 0.066; data-to-parameter ratio = 13.0.

The title compound, $[Mg(C_3H_{10}NO_6P_2)_2]_n$, synthesized by a hydrothermal method, adopts a one-dimensional polymeric chain structure and is isotypic with the previously reported Cd complex based on the ligand N,N-dimethylaminomethane-1,1diphosphonic acid (H₄L). The asymmetric unit contains one half Mg^{2+} ion and one H_3L^- anion. The unique Mg^{2+} ion lies on an inversion center and is octahedrally coordinated by O atoms from six phosphonate groups of four different H₃L⁻ anions. Each H₃L⁻ anion, with one protonated N atom and two phosphonate OH groups, serves as a tridentate ligand. Two of its six phosphonate O atoms chelate to a Mg²⁺ cation in a bidentate fashion, while a third O atom bridges to a neighbouring Mg²⁺ ion. The interconnection of Mg²⁺ ions by the H₃L⁻anions leads to the formation of a polymer chain along the a axis in which the adjacent Mg^{2+} ions are doubly bridged by two equivalent H_3L^- anions. These discrete chains are further assembled into a three-dimensional supramolecular network via O-H···O and N-H···O hydrogen bonds involving the non-coordinated phosphonate O atoms and the protonated N atoms.

Related literature

For other metal complexes based on the *N,N*-dimethyl-aminomethane-1,1- diphosphonate ligand, see: Du *et al.* (2009, 2010*a,b*). For bond-length data, see: Lutz & Muller (1995); Distler *et al.* (1999); Stock & Bein (2004).

Experimental

Crystal data

[Mg(C₃H₁₀NO₆P₂)₂]
$$V = 766.03 (7) \text{ Å}^3$$

 $M_r = 460.43$ $Z = 2$
Monoclinic, $P2_{\frac{1}{2}}/n$ Mo $K\alpha$ radiation
 $a = 5.4507 (3) \text{ Å}$ $\mu = 0.61 \text{ mm}^{-1}$
 $b = 11.2166 (6) \text{ Å}$ $T = 296 \text{ K}$
 $c = 12.5770 (7) \text{ Å}$ $0.40 \times 0.30 \times 0.24 \text{ mm}$
 $\beta = 94.984 (1)^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.675$, $T_{\max} = 0.746$ 4801 measured reflections 1492 independent reflections 1447 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.014$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.024 & 115 \ {\rm parameters} \\ wR(F^2) = 0.066 & {\rm H-atom\ parameters\ constrained} \\ S = 1.09 & \Delta\rho_{\rm max} = 0.38\ {\rm e\ \mathring{A}^{-3}} \\ 1492\ {\rm reflections} & \Delta\rho_{\rm min} = -0.33\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N1−H1 <i>B</i> ···O3	0.91	2.57	3.0997 (18)	118
$N1-H1B\cdots O4^{i}$	0.91	2.31	3.1346 (18)	151
$O3-H3D\cdots O6^{ii}$	0.82	1.70	2.5011 (16)	166
$O4-H4A\cdots O2^{iii}$	0.82	1.81	2.6037 (16)	163
Symmetry codes: $-x + 1, -y + 1, -z +$		$y-\frac{1}{2},-z+\frac{3}{2};$	(ii) $-x + \frac{1}{2}, y - \frac{1}{2}$	$\frac{1}{2}$, $-z + \frac{3}{2}$; (iii)

Data collection: *SMART* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of Jiangxi Province (grant 2008GQH0013) and the Natural Science Foundation of Jiangxi Provincial Education Department (grant GJJ09317).

metal-organic compounds

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5102).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2008). *SMART*, *SADABS* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin. USA.

- Distler, A., Lohse, F. L. & Sevov, S. C. (1999). *J. Chem. Soc. Dalton Trans.* pp. 1805–1812.
- Du, Z.-Y., Sun, Y.-H., Liu, Q.-Y., Xie, Y.-R. & Wen, H.-R. (2009). Inorg. Chem. 48, 7015–7017.
- Du, Z.-Y., Sun, Y.-H., Xie, Y.-R., Lin, J. & Wen, H.-R. (2010a). Inorg. Chem. Commun. 13, 77–80.
- Du, Z.-Y., Sun, Y.-H., Zhang, X.-Z., Luo, S.-F., Xie, Y.-R. & Wan, D.-B. (2010b). *CrystEngComm*, **12**, 1774–1778.
- Lutz, M. & Muller, G. (1995). *Inorg. Chim. Acta*, **232**, 189–193.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stock, N. & Bein, T. (2004). Angew. Chem. Int. Ed. Engl. 43, 749-752.

supplementary m	aterials	

Acta Cryst. (2011). E67, m362-m363 [doi:10.1107/S1600536811005976]

Poly[bis[μ_2 -(dimethylazaniumyl)methylenediphosphonato]magnesium]

Q.-S. Hu, X.-Y. Deng, Y.-H. Sun and Z.-Y. Du

Comment

Among many of the phosphonate ligands studied so far, methylenediphosphonic acid and its derivatives are quite unique because they feature a close connection of two phosphonate moieties via one carbon atom, which facilitate their combined coordination ability to act as a [CP₂O₆] unit rather than two [CPO₃] units. As a result, they show diversified coordination capabilities with metal ions and thus lead to the formation of new structural types. Recently, by using such ligand types, i.e. N,N-dimethylaminomethane-1,1-diphosphonate, we have isolated a series of diphosphonate complexes of metals such as Al^{III}, Fe^{III}, Cd^{II}, Pb^{II} and Ba^{II}, which exhibit variable structures such as zero-dimensional, one-dimensional, double-1dimensional, double-2-dimensional, and three-dimensional structures (Du et al., 2009, 2010a,b). As an expansion of our previous work, we have also obtained a one-dimensional magnesium(II) diphosphonate, namely [Mg(C₆H₂₀N₂O₁₂P₄)]_n, which is isostructural with the previously reported cadmium(II) complex based on the same ligand and shows a one-dimensional chain structure. The asymmetric unit contains a half Mg^{2+} cation and one H_3L^- anion. The unique Mg^{2+} cation lies on an inversion center and is octahedrally coordinated by the O atoms of six phosphonate groups from four H_3L^- anions. The Mg—O [2.0448 (11) – 2.1879 (11) Å] bond lengths are comparable to those reported for other Mg^{II} phosphonate complexes (Lutz & Muller, 1995; Distler et al., 1999; Stock & Bein, 2004). The unique H₃L⁻ anion, with one protonated N atom and two phosphonate OH groups, serves as a tridentate ligand. By using three of its six phosphonate O atoms, it chelates in a bidentate fashion with one Mg²⁺ cation and also bridges to a second Mg²⁺ ion. The interconnection of Mg²⁺ cations by the H_3L^2 anions leads to the formation of a one-dimensional chain along the a-axis, in which the adjacent Mg²⁺ ions are doubly bridged by two equivalent H₃L⁻ anions. These discrete one-dimensional chains are further assembled into a three-dimensional sional supramolecular network via O—H···O and N—H···O hydrogen bonds involving the non-coordinated phosphonate O atoms and the protonated N atoms.

Experimental

For the preparation of (I), a mixture of $Mg(NO_3)_2$ (0.20 mmol) and H_4L (0.50 mmol) and ethanol (3 ml) in 10 ml distilled water, was sealed into a Parr Teflon-lined autoclave (23 ml) and heated at 393 K for 3 d. Colorless block-shaped crystals were collected in ca 55% yield based on Mg. Analysis calculated for $C_6H_{20}N_2O_{12}Mg_1P_4$: C 15.65, H 4.38, N 6.08%; found: C 15.59, H 4.48, N 6.03%.

Refinement

The N-bound and the tertiary C-bound H atoms were positioned geometrically and refined using a riding model: N—H = 0.91 and C—H = 0.98 Å, with Uiso(H) = 1.2Ueq(N, C); while the O-bound and the primary C-bound H atoms were placed

supplementary materials

in idealized positions and constrained to ride on their parent atoms: O—H = 0.82 and C—H = 0.96 Å, with $U_{iso}(H)$ = 1.5 times $U_{eq}(O, C)$.

Figures

Fig. 1. A view of the selected unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x + 1, y, z.]

Fig. 2. A view of the chain structure of (I) along the a-axis. The CPO $_3$ tetrahedra are shaded in purple. Mg, N and C atoms are drawn as cyan, blue and grey circles, respectively. Hydrogen atoms have been omitted for clarity.

Fig. 3. A view of the three-dimensional supramolecular structure of (I) down the *a*-axis. The MgO₆ octahedra and CPO₃ tetrahedra are shaded in cyan and purple, respectively. N, C and H atoms are drawn as blue, grey and green circles, respectively. Hydrogen bonds are represented by dashed lines.

$Poly[bis[\mu_2\text{-}(dimethylazaniumyl)methylenediphosphonato]magnesium]$

Crystal data

[Mg(C₃H₁₀NO₆P₂)₂] $M_r = 460.43$ Monoclinic, $P2_1/n$

Hall symbol: -P 2yn a = 5.4507 (3) Å b = 11.2166 (6) Å c = 12.5770 (7) Å

 $\beta = 94.984 (1)^{\circ}$ $V = 766.03 (7) \text{ Å}^3$ Z = 2

F(000) = 476

 $D_{\rm x} = 1.996 \; {\rm Mg \; m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 4647 reflections

 $\theta = 2.4 - 29.4^{\circ}$

 $\mu = 0.61 \text{ mm}^{-1}$

T = 296 K

Block, colourless

 $0.40\times0.30\times0.24~mm$

Data collection

Bruker SMART APEX CCD area-detector

diffractometer

Radiation source: fine-focus sealed tube

graphite

 ϕ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.675$, $T_{max} = 0.746$ 1492 independent reflections

1447 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.014$

 $\theta_{\text{max}} = 26.0^{\circ}, \, \theta_{\text{min}} = 2.4^{\circ}$

 $h = -6 \rightarrow 6$

 $k = -13 \rightarrow 13$

4801 measured reflections

 $l = -15 \rightarrow 15$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.024$

 $wR(F^2) = 0.066$

S = 1.09

1492 reflections 115 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0347P)^2 + 0.6187P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\Delta \rho_{\text{max}} = 0.38 \text{ e Å}^{-3}$

 $\Delta \rho_{min} = -0.33 \text{ e Å}^{-3}$

Special details

Experimental. IR data (KBr, v, cm⁻¹): 3437 (m), 3137 (s), 3071 (m), 2986 (m), 2826 (m), 2820 (m), 1815 (m), 1473 (m), 1457 (m), 1421 (m), 1388 (m), 1256 (s), 1225 (s), 1200 (versus), 1155 (s), 1128 (s), 1088 (s), 1036 (s), 995 (s), 950 (s), 928 (s), 854 (m), 827 (m), 725 (m), 615 (m), 573 (s), 517 (m), 476 (m).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	y	z	$U_{\rm iso}*/U_{\rm eq}$
Mg1	0.0000	0.5000	0.5000	0.01237 (17)
P1	0.52519 (7)	0.34374(3)	0.59421 (3)	0.01109 (12)
P2	0.34788 (7)	0.55738 (3)	0.72234 (3)	0.01225 (13)
N1	0.5807(3)	0.35032 (12)	0.81729 (11)	0.0161 (3)
H1B	0.6307	0.2757	0.8007	0.019*
C1	0.4187 (3)	0.39596 (14)	0.72149 (12)	0.0126(3)
H1A	0.2596	0.3565	0.7262	0.015*
C2	0.4447 (4)	0.33952 (16)	0.91574 (13)	0.0217 (4)
H2A	0.5545	0.3102	0.9737	0.032*
H2B	0.3096	0.2851	0.9024	0.032*
H2C	0.3831	0.4163	0.9341	0.032*
C3	0.8076(3)	0.42374 (19)	0.84083 (15)	0.0264 (4)
Н3А	0.9027	0.3918	0.9021	0.040*
Н3В	0.7620	0.5045	0.8550	0.040*

supplementary materials

Н3С	0.9041	0.4221	0.7805	0.040*
O1	0.7774 (2)	0.38860 (10)	0.57970 (9)	0.0168 (3)
O2	0.3180 (2)	0.38023 (10)	0.51279 (9)	0.0160(2)
O3	0.5417 (2)	0.20563 (10)	0.60652 (10)	0.0182(3)
H3D	0.4114	0.1800	0.6253	0.027*
O4	0.5780 (2)	0.62560 (11)	0.68532 (9)	0.0177(3)
H4A	0.5846	0.6161	0.6210	0.027*
O5	0.1277 (2)	0.57125 (10)	0.64393 (9)	0.0167(3)
O6	0.3209 (2)	0.59441 (11)	0.83501 (9)	0.0187(3)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mg1	0.0099 (4)	0.0144 (4)	0.0127 (4)	-0.0013 (3)	0.0006(3)	0.0007(3)
P1	0.0111 (2)	0.0108(2)	0.0117 (2)	-0.00042 (14)	0.00234 (15)	0.00033 (14)
P2	0.0116(2)	0.0127(2)	0.0124(2)	0.00185 (14)	0.00060 (15)	-0.00118 (14)
N1	0.0179 (7)	0.0157 (7)	0.0144 (6)	0.0044 (5)	-0.0008(5)	0.0006 (5)
C1	0.0116 (7)	0.0146 (7)	0.0114 (7)	0.0011 (6)	0.0004 (6)	0.0000(6)
C2	0.0286 (10)	0.0216 (9)	0.0150(8)	0.0014 (7)	0.0029 (7)	0.0032 (6)
C3	0.0153 (9)	0.0371 (10)	0.0257 (9)	-0.0014 (8)	-0.0047 (7)	0.0022(8)
O1	0.0137 (6)	0.0172 (6)	0.0200(6)	-0.0027 (4)	0.0041 (4)	0.0022 (5)
O2	0.0142 (6)	0.0197 (6)	0.0141 (5)	0.0016 (4)	0.0008 (4)	0.0009 (4)
O3	0.0178 (6)	0.0122 (6)	0.0253 (6)	-0.0009(4)	0.0067 (5)	0.0010 (5)
O4	0.0171 (6)	0.0191 (6)	0.0171 (5)	-0.0036(5)	0.0022 (5)	-0.0025 (5)
O5	0.0147 (6)	0.0173 (6)	0.0174 (6)	0.0022 (4)	-0.0018 (5)	-0.0004 (4)
O6	0.0196 (6)	0.0217 (6)	0.0148 (6)	0.0060 (5)	0.0015 (5)	-0.0033 (5)

Geometric parameters (Å, °)

Mg1—O5 ⁱ	2.0448 (11)	N1—C3	1.494 (2)
Mg1—O5	2.0448 (11)	N1—C2	1.502(2)
Mg1—O1 ⁱⁱ	2.0615 (11)	N1—C1	1.5196 (19)
Mg1—O1 ⁱⁱⁱ	2.0616 (11)	N1—H1B	0.9100
Mg1—O2	2.1879 (11)	C1—H1A	0.9800
Mg1—O2 ⁱ	2.1879 (11)	C2—H2A	0.9600
P1—O1	1.4898 (12)	C2—H2B	0.9600
P1—O2	1.5134 (12)	C2—H2C	0.9600
P1—O3	1.5587 (12)	С3—Н3А	0.9600
P1—C1	1.8451 (15)	C3—H3B	0.9600
P2—O5	1.4938 (12)	С3—Н3С	0.9600
P2—O6	1.4961 (12)	O1—Mg1 ^{iv}	2.0615 (11)
P2—O4	1.5737 (12)	O3—H3D	0.8200
P2—C1	1.8515 (16)	O4—H4A	0.8200
O5 ⁱ —Mg1—O5	179.999 (1)	C3—N1—C1	112.68 (13)
O5 ⁱ —Mg1—O1 ⁱⁱ	88.62 (5)	C2—N1—C1	112.71 (13)
O5—Mg1—O1 ⁱⁱ	91.38 (5)	C3—N1—H1B	107.1
O5 ⁱ —Mg1—O1 ⁱⁱⁱ	91.38 (5)	C2—N1—H1B	107.1

supplementary materials

O5—Mg1—O1 ⁱⁱⁱ	88.62 (5)	C1—N1—H1B	107.1
O1 ⁱⁱ —Mg1—O1 ⁱⁱⁱ	180.0	N1—C1—P1	112.08 (10)
O5 ⁱ —Mg1—O2	91.82 (4)	N1—C1—P2	115.59 (10)
O5—Mg1—O2	88.18 (4)	P1—C1—P2	113.39 (8)
O1 ⁱⁱ —Mg1—O2	84.94 (4)	N1—C1—H1A	104.8
O1 ⁱⁱⁱ —Mg1—O2	95.06 (4)	P1—C1—H1A	104.8
$O5^{i}$ —Mg1— $O2^{i}$	88.19 (4)	P2—C1—H1A	104.8
O5—Mg1—O2 ⁱ	91.82 (4)	N1—C2—H2A	109.5
O1 ⁱⁱ —Mg1—O2 ⁱ	95.06 (4)	N1—C2—H2B	109.5
O1 ⁱⁱⁱ —Mg1—O2 ⁱ	84.94 (4)	H2A—C2—H2B	109.5
O2—Mg1—O2 ⁱ	180.00 (6)	N1—C2—H2C	109.5
O1—P1—O2	117.90 (7)	H2A—C2—H2C	109.5
O1—P1—O3	107.58 (7)	H2B—C2—H2C	109.5
O2—P1—O3	111.67 (7)	N1—C3—H3A	109.5
O1—P1—C1	111.24 (7)	N1—C3—H3B	109.5
O2—P1—C1	103.22 (7)	H3A—C3—H3B	109.5
O3—P1—C1	104.42 (7)	N1—C3—H3C	109.5
O5—P2—O6	117.19 (7)	H3A—C3—H3C	109.5
O5—P2—O4	111.67 (7)	H3B—C3—H3C	109.5
O6—P2—O4	106.96 (7)	P1—O1—Mg1 ^{iv}	148.50 (8)
O5—P2—C1	104.71 (7)	P1—O2—Mg1	139.08 (7)
O6—P2—C1	108.34 (7)	P1—O3—H3D	109.5
O4—P2—C1	107.57 (7)	P2—O4—H4A	109.5
C3—N1—C2	109.91 (14)	P2—O5—Mg1	137.38 (7)

C3—N1—C2 109.91 (14) P2—O5—Mg1 Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
N1—H1B···O3	0.91	2.57	3.0997 (18)	118
N1—H1B···O4 ^v	0.91	2.31	3.1346 (18)	151
O3—H3D···O6 ^{vi}	0.82	1.70	2.5011 (16)	166
O4—H4A···O2 ⁱⁱ	0.82	1.81	2.6037 (16)	163

Symmetry codes: (v) -x+3/2, y-1/2, -z+3/2; (vi) -x+1/2, y-1/2, -z+3/2; (ii) -x+1, -y+1, -z+1.

Fig. 1

Fig. 2

Fig. 3

